Direct And Inverse Theorem In Weighted Space $\mathrm{L}_{\mathrm{p}, \mathrm{w}}(\mathrm{X})$

S. K. Jassim ${ }^{1}$, Alaa A. Auad ${ }^{2{ }^{2}}$
1 University of Al-Mustansirya, faculty of science. Dept. of Mathematics
2 University of Al-Anbar faculty of education for pure science, Dept. of mathematics
*E-mail : alaaadnan2000@yahoo.com

Abstract

These The aim of this paper, we define the operator $\mathrm{V}_{2 n}(\mathrm{f})$ and use it to find the degree of best one-sided approximation of unbounded functions in weighted space $L_{p, w}(X)$ by proving direct and inverse inequalities.

Index Terms - Vallee-Poussin operator, best one-sided approximation and Ditzian-Totic modulus of smoothness.

1 Introduction

LET $\mathrm{X}=[0,1]$, we denote by $\mathrm{L}_{\infty}(\mathrm{X})$ [8] the set of all dbounded measurable functions with usual norm $\|f\|_{\infty}=\sup \{|f(x)|, x \in X\}$. For $(1 \leqslant p<\infty)$, let $\operatorname{Lp}(X)$ the set of all bounded measurable functions with norm
$\|f\|_{\mathrm{p}}=\left\{\left(\int_{0}^{1}|\mathrm{f}(\mathrm{x})|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{\mathrm{p}}}<\infty ;(1 \leq p<\infty)\right\}$.
Further, for $\delta>0$ the locally global norm of a function f is defined by
$\|f\|_{\delta, p}=\left(\int_{0}^{1} \sup \left\{|f(y)|^{p}: y \in\left[x-\frac{\delta}{2}, x+\frac{\delta}{2}\right]\right\} d y\right)^{\frac{1}{p}}$
$(1 \leq \mathrm{p}<\infty)$.
Now, let W be the set of all weight functions on X. Consider $L_{p, w}(X)$ the space of all unbounded functions f on X such that $|f(x)| \leq \operatorname{Mw}(x)$, where M is positive real number, which are equipped with the following norm

$$
\|f\|_{p, w}=\left(\int_{0}^{1}\left|\frac{\mathrm{f}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}\right|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{p}}<\infty .
$$

For, $\delta>0$ and $(1 \leq p<\infty)$ the weighted locally global norm of $f \in L p, w(X)$ is define by
$\|f\|_{\delta, p, w}=\left(\int_{0}^{1} \sup \left\{\left|\frac{\mathrm{f}(\mathrm{y})}{\mathrm{w}(\mathrm{y})}\right|^{\mathrm{p}}: y \in\left[x-\frac{\delta}{2}, x+\frac{\delta}{2}\right]\right\} d y\right)^{\frac{1}{p}}<\infty$.
The $k^{\text {th }}$ locally modulus of smoothness for $f \in L_{\infty}$ is defined by [2]
$\omega_{\mathrm{k}}(\mathrm{f}, \mathrm{x}, \delta)_{\infty}=\sup _{|\mathrm{h}|<\delta}\left\{\left|\Delta_{\mathrm{h}}^{\mathrm{k}} \mathrm{f}(\mathrm{t})\right|, \mathrm{t}, \mathrm{t}+\mathrm{kh} \in\left[\mathrm{x}-\frac{\mathrm{h}}{2}, \mathrm{x}+\frac{\mathrm{h}}{2}\right]\right\}$
where the $\mathrm{k}^{\text {th }}$ deference $\Delta_{\mathrm{h}}^{\mathrm{k}}$ is defined by

$$
\Delta_{\mathrm{h}}^{\mathrm{k}} \mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}
\sum_{\mathrm{i}=0}^{\mathrm{k}}(-1)^{\mathrm{k}+\mathrm{i}}\binom{\mathrm{k}}{\mathrm{i}} \mathrm{f}\left(\mathrm{x}+\frac{\mathrm{kh}}{2}\right)
\end{array}\right\}
$$

The $k^{\text {th }}$ average modulus of smoothness for $f \in L_{p}(X)$ and $f \in$ $\mathrm{L}_{\mathrm{p}, \mathrm{w}}(\mathrm{X})$ are respectively given by $\tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}}=\left\|\omega_{\mathrm{k}}(\mathrm{f}, ., \delta)\right\|_{\mathrm{p}}$
where ordinary modulus of continuity for $f \in L_{p}(X)$ given by $\omega_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}}=\sup _{0<\mathrm{h}<\delta}\left\{\left\|\Delta_{\mathrm{h}}^{\mathrm{k}} \mathrm{f}(.)\right\|_{\mathrm{p}}\right\}, \delta>0$, and $\tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}=\left\|\omega_{\mathrm{k}}(\mathrm{f}, ., \delta)\right\|_{\mathrm{p}, \mathrm{w}}$
where ordinary modulus of continuity for $f \in L_{p, w}(X)$ given by
$\omega_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}=\sup _{0<\mathrm{h}<\delta}\left\{\left\|\Delta_{\mathrm{h}}^{\mathrm{k}} \mathrm{f}(.)\right\|_{\mathrm{p}, \mathrm{w}}\right\}, \delta>0$.
Let us define the Ditzian-Totic modulus of smoothness [8] for $f \in L_{p}(X)$ as $\quad w_{k}^{\varphi}(f, \delta)_{p}=\sup \left\|\Delta_{h}^{k \varphi} f(.)\right\|_{p}$,
Where

$$
\Delta_{\varphi \mathrm{h}}^{\mathrm{r}}=\left\{\begin{array}{cc}
\sum_{\mathrm{i}=0}^{\mathrm{n}}(-1)^{\mathrm{r}+\mathrm{i}}\binom{\mathrm{r}}{\mathrm{i}} \mathrm{f}(\mathrm{x}+\mathrm{i} \varphi \mathrm{~h}), & \mathrm{x}+\varphi \mathrm{h} \in \mathrm{X} \\
0 & \text { otherwise }
\end{array}\right\}
$$

the locally Ditzian-Totic weighted modulus of smoothness for $f \in L_{p, w}(X)$ is defined by

$$
\mathrm{w}_{\mathrm{k}}^{\varphi}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}=\sup \left\|\Delta_{\mathrm{h}}^{\mathrm{k} \varphi} \mathrm{f}(.)\right\|_{\mathrm{p}, \mathrm{w}}
$$

where $\varphi(x)=\left(1-x^{2}\right) / 2$.
Let w_{1} and w_{2} be two modulus of continuity, we say that they are equivalent if there are $k_{1}, k_{2}>0$ such that
$\mathrm{k}_{1} \mathrm{~W}_{1}(\mathrm{x}) \leq \mathrm{w}_{2}(\mathrm{x}) \leq \mathrm{k}_{2} \mathrm{~W}_{1}(\mathrm{x})$, for $\mathrm{x}>0$.
The degree of best approximation to a given continuous function with respect to trigonometric or algebraic polynomials on interval X is given by

$$
\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{\infty}=\inf \left\{\left\|f-\mathrm{p}_{\mathrm{n}}\right\|_{\infty} ; \mathrm{p}_{\mathrm{n}} \in \mathbb{P}_{\mathrm{n}}\right\}
$$

where \mathbb{P}_{n} denote the set of all trigonometric or algebraic polynomials of degree $\leq \mathrm{n}$. While the degree of best approximation of a function $f \in L_{p}(X)$ with respect to trigonometric or algebraic polynomials of degree $\leq n$ on X is given by

$$
\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{\mathrm{p}}=\inf \left\{\left\|f-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}} ; \mathrm{p}_{\mathrm{n}} \in \mathbb{P}_{\mathrm{n}}\right\}
$$

Also, we define the degree of best weighted approximation to a given $f \in L_{p, w}(X)$ with respect to trigonometric or algebraic polynomials on X is given by

$$
E_{n}(f)_{p, w}=\inf \left\{\left\|f-p_{n}\right\|_{p, w} ; p_{n} \in P_{n}\right\}
$$

Now we shall define the degree of best one-sided approximation of $f \in L_{p}(X)$ and the degree of best one-sided weighted approximation of $f \in L_{p, w}(X)$ with respect to the trigonometric or algebraic polynomials on X are respectively given by

$$
\begin{gathered}
\tilde{\mathrm{E}}_{\mathrm{n}}(\mathrm{f})_{\mathrm{p}}=\inf \left\{\left\|\mathrm{p}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{p}} ; \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}} \in \mathbb{P}_{\mathrm{n}} \operatorname{andq}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})\right. \\
\left.\quad \leq \mathrm{p}_{\mathrm{n}}(\mathrm{x})\right\} \\
\tilde{\mathrm{E}}_{\mathrm{n}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}}=\inf \left\{\left\|\mathrm{p}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}} ; \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}} \in \mathbb{P}_{\mathrm{n}} \operatorname{andq}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})\right. \\
\left.\leq \mathrm{p}_{\mathrm{n}}(\mathrm{x})\right\}
\end{gathered}
$$

Weierstrass theorem tells us that $\mathrm{En} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for f belong to continuous functions space on X. This information can be obtained if additional information about the function f is given; for example, if we know its modulus of continuity, the class Lipa to which it belongs or the number of times it can differentiated.

In general, the smoother the function the faster $E_{n}(f)$ tends to zero[8].

While inverse theorem gives result in opposite direction.
The inverse results for the degree of best one-sided weighted approximation to a function $f \in L_{p, w}(X)$ with respect to algebraic polynomials implies the inverse results for the degree of best one-sided approximation to $f \in L_{p, w}(X)$ with respect to trigonometric polynomials.

Further direct-inverse theorems for algebraic polynomial of one-sided approximation in the weighted space $L_{p, w}$ are one-one correspondence with direct-inverse theorem for trigonometric polynomial of best one-sided approximation in weighed space $L_{p, w}$ to even functions.

Let $\mathrm{V}_{\mathrm{n}}(\mathrm{f})$ be the trigonometric polynomial operator of degree $2 \mathrm{n}-1$, such that

$$
\begin{gathered}
\mathrm{V}_{\mathrm{n}}(\mathrm{f}, \mathrm{x})=\left\{\mathrm{S}_{\mathrm{n}}(\mathrm{f}, \mathrm{x})+\mathrm{S}_{\mathrm{n}+1}(\mathrm{f}, \mathrm{x})+\cdots+\mathrm{S}_{2 \mathrm{n}-1}(\mathrm{f}, \mathrm{x})\right\} \\
=2 \sigma_{2 \mathrm{n}}(\mathrm{f}, \mathrm{x})-\sigma_{\mathrm{n}}(\mathrm{f}, \mathrm{x})
\end{gathered}
$$

Where $S_{n}(f, x)$ is the Fourier series and $\sigma_{n}(f, x)$ is the Fejer mean see[8]. Hence $V_{n}(f)$ is called Vallee-poussin operator.
In (1994) Ditzian, D. Jiang and D. Leviantan [2] are obtained the equivalence for $0<p<1$ and $0<\alpha<k$ between $\operatorname{En}(\mathrm{f}) \mathrm{p}$ $=\mathrm{o}(\mathrm{n}-\mathrm{a})$ and $\omega \varphi(\mathrm{f}, \mathrm{t})=\mathrm{o}(\mathrm{ta})$, this result complements the know direct and inverse theorems for best approximation in space $\mathrm{L}_{\mathrm{p}}([-1,1]), 1 \leqslant \mathrm{p}<\infty$.

In (2005) A.H. AL-abdlla [1] attained the degree of approximation of 2π-periodic bounded μ-measurable functions in space $L_{p}(\mu)$ by proving direct and inverse inequalities of a 2π-periodic bounded μ-measurable functions and she proved that the degree approximations of these function are equivalent with degree of best one-sided approximation by trigonometric polynomials.
In (2008) Z. Esa [3] found the degree of best approximation of bounded μ-measurable function by connecting the modulus of smoothness and averaged modulus with the Kfunctional in $L_{p, \mu}(X)$.

2 Auxiliary Theorems and Lemmas

Theorem 2.1 [7]: Suppose that sequence sn $=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ converges to zero and $F \subset L p([-\pi, \pi])$.
Then direct inverse theorems

$$
\text { i. } \quad \text { For } f \in \operatorname{Lp}([-\pi, \pi]), \quad E_{n}^{T}(f)_{p}=o\left(s_{n}\right) \Leftrightarrow f \in F
$$

where $E_{n}^{T}(f)_{p}$ denote the degree of best approximation to a function f by trigonometric polynomial of degree $\leq \mathrm{n}$.
ii. For even $f \in L_{p}([-\pi, \pi])$, $\quad E_{n}^{T}(f)_{p}=o\left(s_{n}\right) \Leftrightarrow f \in F$
iii. For $f \in L_{p}([-1,1]), \quad E_{n}^{H}(f)_{p}=o\left(s_{n}\right) \Leftrightarrow f o g \in F$
where $E_{n}^{H}(f)_{p}$ denote the degree of best approximation to a function f by algebraic polynomial of degree $\leq n$ and a function g define by $g: R \rightarrow R$ such that $g(x)=\cos x$. Satisfying the implication $\mathrm{i} \Rightarrow \mathrm{ii} \Leftrightarrow$ iii.
Lemma $2.2[2]:$ For $f \in L_{p}(X)_{1}(1 \leq p<\infty)$, we have
$E_{n}(f)_{p} \leq c(p) \omega_{k}^{\varphi}(f,-)_{p}, \quad \varphi(x)=\left(1-x^{2}\right)^{\frac{1}{2}}$
Theorem 2.3 " Inverse theorem " [2]:
For $f \in L_{p}(X),(0<p<1)$, we have
$\omega_{k}^{\varphi}(f, t)_{p} \leq c t^{k}\left(\sum_{0<n<t^{-1}}(n+1)^{k p-1} E_{n}(f)^{p}{ }_{p}\right)^{\frac{1}{p}}$.
Theorem 2.4 " Weierstrass Theorem " [8] :
If $f \in C[a, b]$, then for each $\epsilon>0$, there exists trigonometric polynomial T such that

$$
\|f-T\|_{p}<\epsilon \quad,(1 \leq p<\infty) .
$$

Theorem 2.5 [7]: For $f \in \operatorname{Lp}([-1,1])$, the two modulus $\omega_{\varphi}(f, \delta,[-1,1])_{p}$ and $\omega(\text { fog }, \delta,[-\pi, \pi])_{p}$ are equivalent.
Lemma 2.6 [6]: Let $f \in L_{p, w}(X),(1 \leq p<\infty)$. Then
$E_{n}(f)_{p, w} \leq \tilde{\mathrm{E}}_{n}(f)_{p, w} \leq c E_{n}(f)_{p, w}$.
Lemma 2.7 [5]: Let $f \in L_{p}(X),(1 \leq p<\infty)$. Then $\tilde{\mathrm{E}}_{n}(f)_{p} \leq c(p) E_{n}(f)_{\delta, p} \leq c \tilde{\mathrm{E}}_{n}(f)_{p}$.
Lemma 2.8 [6]: Let $f \in L_{p, w}(X),(1 \leq p<\infty)$. Then

$$
\|f\|_{p, w} \leq\|f\|_{\delta, p, w} \leq c(p)\|f\|_{p, w}
$$

Lemma 2.9 [5]: If $p_{n} \in \mathbb{P}_{n}$, then
$\left\|p_{n}\right\|_{p, w}=(1+\delta n)^{\frac{1}{p}}\left\|p_{n}\right\|_{p, w}$, where δ is positive real number.
Lemma 2.10 [9]: Let $f \in L_{p, w}(X),(1 \leq p<\infty)$. Then
$\tilde{\mathrm{E}}_{n}(f)_{p} \leq c_{k} \tau_{k}(f, \delta)_{p}$.

$$
\begin{gathered}
c_{k} \tau_{k}(f, \delta)_{p} \\
\tau_{k}(f, \delta)_{p} \leq c_{k} \delta^{k}
\end{gathered} \sum_{m=0}^{n}(m+1)^{k-1} \tilde{\mathrm{E}}_{n}(f)_{p}
$$

3 Main Results

Here we shall use the operator $\operatorname{Vn}(f, x)$ to find the degree of best one-sided approximation in $\mathrm{Lp}, \mathrm{w}(\mathrm{X})$ space.
Now, we need the following lemmas.
Lemma A : Let $f \in L_{p, w}(X),(1 \leq p<\infty)$. Then

$$
\tilde{\mathrm{E}}_{n}(f)_{p, w} \leq c E_{n}(f)_{\delta, p, w} \leq c \tilde{\mathrm{E}}_{n}(f)_{p, w}
$$

Proof :

Consider p_{n} and $q n$ are the best one-sided approximation of a function f in space $L_{p, w}(X)$ and $\tilde{E}_{n}(f)_{p, w}=$ $\left\|p_{n}-q_{n}\right\|_{p, w}$, such that $q_{n}(x) \leq f(x) \leq p_{n}(x)$.
From definition of $\mathrm{c} \mathrm{E}_{\mathrm{n}}(\mathrm{f})_{\delta, \mathrm{p}, \mathrm{w}}$, lemma (2.8) and let $\mathrm{p}^{*} \mathrm{n}$ be the best approximation polynomial of a function $f \in L_{p, w}(X)$

$$
\begin{gathered}
E_{n}(f)_{\delta, p, w}=\left\|f-p_{n}^{*}\right\|_{\delta, p, w} \leq c\left\|f-p_{n}^{*}\right\|_{p, w} \\
\leq c\left\|p_{n}-q_{n}\right\|_{p, w}=c \tilde{E}_{n}(f)_{p, w}
\end{gathered}
$$

therefore $E_{n}(f)_{\delta, p, w} \leq c \tilde{E}_{n}(f)_{p, w}$.
We shall prove the inequality $\tilde{E}_{n}(f)_{p, w} \leq c E_{n}(f)_{\delta, p, w}$
Since p_{n}^{*} is best approximation of f in \mathbb{P}_{n} such that

$$
\left\|f-p_{n}\right\|_{\delta, \mathrm{p}, \mathrm{w}}=\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{\delta, \mathrm{p}, \mathrm{w}}
$$

Consider $p_{n}(x)=p_{n}^{*}(x)+\frac{n}{c} \int_{X} I_{n}(x-t) \sup \left\{\left|\frac{f(y)}{w(y)}-\frac{\varphi_{n}(y)}{w(y)}\right|, y \in\right.$ $\left.\left[\mathrm{x}-\frac{\delta}{2}, \mathrm{x}-\frac{\delta}{2}\right]\right\} \mathrm{dt}$
and $\quad q_{n}(x)=p_{n}^{*}(x)-\frac{n}{c} \int_{X} I_{n}(x-t) \sup \left\{\left|\frac{f(y)}{w(y)}-\frac{\varphi_{n}(y)}{w(y)}\right|, y \in\right.$ $\left.\left[\mathrm{x}-\frac{\delta}{2}, \mathrm{x}-\frac{\delta}{2}\right]\right\} \mathrm{dt}$
clearly p_{n} and $q_{n} \in \mathbb{P}_{n}$, we shall to prove for every $x \in X$ the inequality $\mathrm{q}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{p}_{\mathrm{n}}(\mathrm{x})$ hold.
$p_{n}(x)=p_{n}^{*}(x)+\frac{n}{c} \int_{X} I_{n}(x-t) \sup \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|, y \in\right.$
$\left.\left[\mathrm{x}-\frac{\delta}{2}, \mathrm{x}-\frac{\delta}{2}\right]\right\} \mathrm{dt}$

$$
\begin{aligned}
& \geq \mathrm{p}_{\mathrm{n}}^{*}(\mathrm{x})+\frac{\mathrm{n}}{\mathrm{c}} \int_{\frac{x}{2}} \mathrm{I}_{\mathrm{n}}(\mathrm{u}) \sup \left\{\left|\frac{\mathrm{f}(\mathrm{y})}{\mathrm{w}(\mathrm{y})}-\frac{\mathrm{p}_{\mathrm{n}}^{*}(\mathrm{y})}{\mathrm{w}(\mathrm{y})}\right|, \mathrm{y}\right. \\
& \left.\quad \in\left[\mathrm{u}+\mathrm{t}-\frac{\delta}{2}, \mathrm{u}+\mathrm{t}+\frac{\delta}{2}\right]\right\} \mathrm{du} \\
& \geq \mathrm{p}_{\mathrm{n}_{n}}^{*}(\mathrm{x})+\frac{\mathrm{n}}{\mathrm{c}}\left|\frac{\mathrm{f}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}-\frac{\mathrm{p}_{\mathrm{n}}^{*}(\mathrm{x})}{\mathrm{w}(\mathrm{x}}\right| \frac{\mathrm{c}}{\mathrm{n}} \\
& \geq \mathrm{p}_{\mathrm{n}}^{*}(\mathrm{x})+\mathrm{f}(\mathrm{x})-\mathrm{p}_{\mathrm{n}}^{*}(\mathrm{x})=\mathrm{f}(\mathrm{x})
\end{aligned}
$$

Hence

$$
\mathrm{p}_{\mathrm{n}}(\mathrm{x}) \geq \mathrm{f}(\mathrm{x})
$$

$q_{n}(x)=p_{n}^{*}(x)-\frac{n}{c} \int_{X} I_{n}(x-t) \sup \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|, y \in\right.$
$\left.\left[\mathrm{x}-\frac{\delta}{2}, \mathrm{x}-\frac{\delta}{2}\right]\right\} \mathrm{dt}$

$$
\begin{gathered}
\leq p_{n}^{*}(x)-\frac{n}{c} \int_{\frac{x}{2}} I_{n}(u) \sup \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|, y\right. \\
\left.\in\left[x+t+\frac{\delta}{2}, x+t-\frac{\delta}{2}\right]\right\} d u \\
\leq p_{n}^{*}(x)-\frac{n}{c}\left|\frac{f(x)}{w(x)}-\frac{p_{n}^{*}(x)}{w(x}\right| \frac{c}{n} \leq p_{n}^{*}(x)+f(x)-p_{n}^{*}(x)=f(x)
\end{gathered}
$$

$$
\text { so, } q_{n}(x) \leq f(x)
$$

Thus

$$
\begin{aligned}
& \left\|p_{n}-q_{n}\right\|_{p, w}=2\left(\int _ { X } \left(\frac { n } { c } \int _ { X } I _ { n } (x - t) \operatorname { s u p } \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|, y\right.\right.\right. \\
& \left.\left.\in\left[x-\frac{\delta}{2}, x-\frac{\delta}{2}\right]\right\} d t d y\right)^{\frac{1}{p}} \\
& \leq \frac{2 n}{c}\left(\int _ { X } \left(\frac { c } { n } \int _ { \frac { x } { 2 } } I _ { n } (u) \operatorname { s u p } \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|, y\right.\right.\right. \\
& \left.\left.\in\left[u+t-\frac{\delta}{2}, u+t+\frac{\delta}{2}\right]\right\} d u d y\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
=2\left\|I_{n}\right\|\left(\int _ { x } \operatorname { s u p } \left\{\left|\frac{f(y)}{w(y)}-\frac{p_{n}^{*}(y)}{w(y)}\right|^{p} y\right.\right.
$$

$$
\left.\left.\in\left[u+t-\frac{\delta}{2}, u+t+\frac{\delta}{2}\right]\right\} d y\right)^{\frac{1}{p}}=c E_{n}(f)_{\delta, p, w}
$$

$$
\text { we get } \quad \tilde{E}_{n}(f)_{p, w} \leq c E_{n}(f)_{\delta, p, w}
$$

Lemma B: Let $f \in L_{p, w}(X),(1 \leq p<\infty)$. Then

$$
\tilde{\mathrm{E}}_{n}(f)_{p, w} \leq c_{k} \tau_{k}(f, \delta)_{p, w}
$$

Proof: We have

$$
\begin{gathered}
\tilde{\mathrm{E}}_{\mathrm{n}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}}=\inf \left\{\left\|\mathrm{p}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}} ; \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}} \in \mathrm{P}_{\mathrm{n}} \operatorname{andq}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x})\right. \\
\left.\quad \leq \mathrm{p}_{\mathrm{n}}(\mathrm{x})\right\} \\
=\inf \left\{\left(\int_{\mathrm{X}}\left|\frac{\mathrm{p}_{\mathrm{n}}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}-\frac{\mathrm{q}_{\mathrm{n}}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}\right|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{p}}\right\}=\tilde{E}_{\mathrm{n}}\left(\frac{\mathrm{f}}{\mathrm{w}}\right)_{\mathrm{p}}
\end{gathered}
$$

Since $\frac{f}{w}$ is integrable function, then by using lemma (2.9) (i), we get
$\tilde{E}_{\mathrm{n}}\left(\frac{\mathrm{f}}{\mathrm{f}}\right)_{\mathrm{p}} \leq \mathrm{c}_{\mathrm{k}} \tau_{\mathrm{k}}\left(\frac{\mathrm{f}}{\mathrm{w}}, \delta\right)_{\mathrm{p}}=\mathrm{c}_{\mathrm{k}} \tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}$.
Lemma C: Let $f \in L_{p, w}(X)$, for $(1 \leq p<\infty)$. Then

$$
\tau_{k}(f, \delta)_{p, w} \leq c_{k} \delta^{k} \sum_{m=0}^{n}(m+1)^{k-1} \tilde{\mathrm{E}}_{m}(f)_{p, w}
$$

Proof: We have

$$
\begin{gathered}
\tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}=\left\|\omega_{\mathrm{k}}(\mathrm{f}, ., \delta)\right\|_{\mathrm{p}, \mathrm{w}} \leq 2^{\mathrm{p}}\left\|\omega_{\mathrm{k}}(\mathrm{f}, ., \delta)\right\|_{\mathrm{p}, \mathrm{w}} \\
=2^{\mathrm{p}}\left\|\omega_{\mathrm{k}}\left(\frac{\mathrm{f}}{\mathrm{w}}, ., \delta\right)\right\|_{\mathrm{p}}=2^{\mathrm{p}} \tau_{\mathrm{k}}\left(\frac{\mathrm{f}}{\mathrm{w}}, \delta\right)_{\mathrm{p}}
\end{gathered}
$$

By using lemma (2.9) (ii)

$$
\leq c_{k} \delta^{k} \sum_{m=0}^{n}(m+1)^{k-1} \tilde{E}_{m}\left(\frac{f}{w}\right)_{p}
$$

Since

$$
\tilde{E}_{n}\left(\frac{f}{w}\right)_{p}=\inf \left\{\left\|\frac{p_{n}}{w}-\frac{q_{n}}{w}\right\|_{p}\right\}=\inf \left\{\left\|p_{n}-q_{n}\right\|_{p, w}\right\}=
$$

$\tilde{E}_{n}(f)_{p, w}$
We get $\tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{c}_{\mathrm{k}} \delta^{\mathrm{k}} \sum_{\mathrm{m}=0}^{\mathrm{n}}(\mathrm{m}+1)^{\mathrm{k}-1} \tilde{\mathrm{E}}_{\mathrm{m}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}}$
Lemma D: For $f \in L_{p, w}(X)$, we have that the two modulus $\omega(f o g, \delta,)_{p, w}$ and $\omega_{\varphi}(f, \delta,)_{p, w}$ are equivalent.

Proof: We have

$$
\begin{aligned}
& \omega_{\varphi}(\mathrm{f}, \delta,)_{\mathrm{p}, \mathrm{w}}=\sup _{0<\mathrm{h}<\delta}\left\|\Delta_{\varphi \mathrm{h}} \mathrm{f}(.)\right\|_{\mathrm{p}, \mathrm{w}} \\
& =\sup _{0<\mathrm{h}<\delta}\left\{\left(\int_{0}^{1}\left|\frac{\mathrm{f}(\mathrm{x}+\varphi(\mathrm{x}) \mathrm{h})-\mathrm{f}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}\right|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{\mathrm{p}}}\right\} \\
& =\sup _{0<\mathrm{h}<\delta}\left\{\left(\int_{0}^{1} \left\lvert\, \frac{\mathrm{f}(\mathrm{x}+\varphi(\mathrm{x}) \mathrm{h}}{\mathrm{w}(\mathrm{x})}\right.\right.\right. \\
& \left.\left.\quad-\left.\frac{\mathrm{f}(\mathrm{x})}{\mathrm{w}(\mathrm{x})}\right|^{\mathrm{p}} \mathrm{dx}\right)^{\frac{1}{\mathrm{p}}}\right\}=\sup _{0<\mathrm{h}<\delta}\left\|\Delta_{\varphi \mathrm{h}} \frac{\mathrm{f}(.)}{\mathrm{w}(.)}\right\|_{\mathrm{p}} \\
& =\mathrm{w}_{\varphi}\left(\frac{\mathrm{f}}{\mathrm{w}}, \delta,\right)_{\mathrm{p}} .
\end{aligned}
$$

From the definition of $f \in L_{p, w}(X)$ we get $\frac{f}{w}$ integerable, also we can show that $\frac{\text { fog }}{\mathrm{w}}$ integreable function.
Similarly, we can easily to show that
$\omega(\text { fog }, \delta,)_{p, w}=\omega\left(\frac{\text { fog }}{w}, \delta,\right)_{p}$
From theorem (2.5), we get $\omega_{\varphi}(f, \delta,)_{p, w}$ and $\omega(f o g, \delta,)_{p, w}$ are equivalent.
Lemma E: For $f \in L_{p, w}(X)$, we have the following are equivalent :
i. $E_{n}^{H}(f)_{p, w}=o\left(\frac{1}{n}\right)$.
ii. $E_{n}^{T}(f)_{p, w}=o\left(\frac{1}{n}\right)$.
iii. $\omega_{\varphi}\left(f, \frac{1}{n}\right)_{p, w}=o\left(\frac{1}{n}\right)$.
iv. $\omega\left(f \circ g, \frac{1}{n}\right)_{p, w}=o\left(\frac{1}{n}\right)$.
v. There exist a constant c and the set of polynomials Pn of degree
$\leq n$ satisfying
$\left\|f-p_{n}\right\|_{p, w}=o\left(\frac{1}{n}\right)$.

Proof :

Let $E_{n}^{H}(f)_{p, w}=o\left(\frac{1}{n}\right)$ by using theorem (2.1), we can easily show that $E_{n}^{T}\left(f_{p, w}=o\left(\frac{1}{n}\right)\right.$ and the converse is true, therefore $\mathrm{i} \Leftrightarrow \mathrm{i}$.
By using lemma (2.2) and theorem (2.3) we obtain $E_{n}^{T}(f)_{p, w}$ is equivalent to $\omega_{\varphi}\left(\mathrm{f}, \frac{1}{\mathrm{n}},\right)_{\mathrm{p}, \mathrm{w}}$, hence $\mathrm{ii} \Leftrightarrow$ iii.
From lemma (D), we have $\omega_{\varphi}\left(f, \frac{1}{n},\right)_{p, w}$ and $\omega\left(f \circ g, \frac{1}{n}\right)_{p, w}$ are equivalent, we get iii \Leftrightarrow iv.
Finally, we have $\omega\left(\text { fog, } \frac{1}{n}\right)_{p, w}=o\left(\frac{1}{n}\right)$, from theorem (2.4) and $\frac{f}{w}$ is continuous function then $\left\|\frac{f}{w}-\frac{p_{n}}{w}\right\|_{p}=\left\|f-p_{n}\right\|_{p, w}<$ ϵ

$$
\begin{gathered}
\Leftrightarrow\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}<c \omega\left(\mathrm{f}, \frac{1}{\mathrm{n}}\right)_{\mathrm{p}, \mathrm{w}} \\
\Leftrightarrow\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}=\mathrm{o}\left(\frac{1}{\mathrm{n}}\right)
\end{gathered}
$$

So iv $\Leftrightarrow \mathrm{v}$.

Remark :

For $\mathrm{f} \in \mathrm{L}_{\mathrm{p}, \mathrm{w}}(\mathrm{X})$ and by using theorem (2.1) we can obtain easily that direct-inverse theorems for algebraic polynomial of one-sided approximation are 1-1 correspondence with direct-inverse theorems for trigonometric polynomial of best one-sided approximation to even function.
Theorem 3.1 " Direct Theorem " :
Let $f \in L_{p, w}(X)$, for $(1 \leq p<\infty)$. Then

$$
\begin{gathered}
\left\|f-V_{n}(f)\right\|_{p, w} \leq c_{k} \tau_{k}(f, \delta)_{p, w} \\
\text { Proof : }\left\|\mathrm{f}-\mathrm{V}_{\mathrm{n}}(\mathrm{f})\right\|_{\mathrm{p}, \mathrm{w}} \\
\left.=\| \mathrm{f}-\mathrm{p}_{\mathrm{n}}+\mathrm{p}_{\mathrm{n}}-V_{\mathrm{n}} \mathrm{f}\right) \|_{\mathrm{p}, \mathrm{w}} \\
\\
\leq\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}+\left\|\mathrm{p}_{\mathrm{n}}-V_{\mathrm{n}}(\mathrm{f})\right\|_{\mathrm{p}, \mathrm{w}}
\end{gathered}
$$

Since V_{n} preserver of trigonometric polynomial and by using linearity we get

$$
\begin{aligned}
& =\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}+\left\|V_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{n}}\right)-\mathrm{V}_{\mathrm{n}}(\mathrm{f})\right\|_{\mathrm{p}, \mathrm{w}} \\
& =\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}+\left\|V_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{n}}-\mathrm{f}\right)\right\|_{\mathrm{p}, \mathrm{w}} \\
& =\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}+\left\|\mathrm{p}_{\mathrm{n}}-\mathrm{f}\right\|_{\mathrm{p}, \mathrm{w}} \\
& =2\left\|\mathrm{f}-\mathrm{p}_{\mathrm{n}}\right\|_{\mathrm{p}, \mathrm{w}}
\end{aligned}
$$

Let p_{n} and q_{n} be the trigonometric polynomials of degree less than or equal n best one-sided approximation of a function $f \in L_{p, w}(X)$ such that

$$
\mathrm{q}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{p}_{\mathrm{n}}(\mathrm{x}), x \in X_{\sim}^{X} .
$$

So, $\left\|f-V_{n}(f)\right\|_{p, w} \leq c_{1}\left\|p_{n}-q_{n}\right\|_{p, w} \leq c_{2} \tilde{E}_{n}(f)_{p, w}$
By using Lemma (2.10) (i), we get
$\left\|f-V_{n}(f)\right\|_{p, w} \leq c_{k} \tau_{k}(f, \delta)_{p, w}$.
We can prove the direct Theorem by standard method from the following lemma.
Lemma 3.2: If $f \in L_{p, w}(X)$ and $\delta>0$, then

$$
E_{n}^{H}(f)_{p, w} \leq w(\text { fog }, \delta,)_{p, w} \leq k w_{\varphi}(f, \delta,)_{p, w} \leq
$$

$k w(f, \delta,)_{p, w}$.
Proof : By using lemma (2.2), then $\mathrm{E}_{\mathrm{n}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}} \leq \mathrm{k} \omega(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}, \mathrm{k}$ is constant and from lemma (D), we get $E_{n}(f)_{p, w} \leq$ $\mathrm{k} \omega(\mathrm{fog}, \delta)_{\mathrm{p}, \mathrm{w}}$
Also by using lemma (D) and definition of w we have

$$
\omega(\mathrm{fog}, \delta)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{k} \omega_{\varphi}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{k} \omega(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}}
$$

We obtain

$$
E_{\mathrm{n}}^{\mathrm{H}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}} \leq \omega(\mathrm{fog}, \delta,)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{k} \omega_{\varphi}(\mathrm{f}, \delta,)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{k} \omega(\mathrm{f}, \delta,)_{\mathrm{p}, \mathrm{w}}
$$

Theorem 3.4 " Inverse Theorem "
Let $f \in L_{p, w}(X)$, for $(1 \leq p<\infty)$, then

$$
\tau_{k}(f, \delta)_{p, w} \leq c_{k} \delta^{k} \sum_{\mathrm{m}=0}^{\mathrm{n}}(\mathrm{~m}+1)^{\mathrm{k}-1}\left\|\mathrm{f}-\mathrm{V}_{\mathrm{n}}(\mathrm{f})\right\|_{\mathrm{p}, \mathrm{w}}
$$

Proof :

Consider $E_{n}(f)_{p, w}=\inf \left\|f-V_{n}(f)\right\|_{p, w}$
From lemma (C)
$\tau_{\mathrm{k}}(\mathrm{f}, \delta)_{\mathrm{p}, \mathrm{w}} \leq \mathrm{c}_{\mathrm{k}} \delta^{\mathrm{k}} \sum_{\mathrm{m}=0}^{\mathrm{n}}(\mathrm{m}+1)^{\mathrm{k}-1} \tilde{\mathrm{E}}_{\mathrm{m}}(\mathrm{f})_{\mathrm{p}, \mathrm{w}}$
Also by using lemma (A) we get

$$
\begin{aligned}
& \leq c_{k} \delta^{k} \sum_{m=0}^{n}(m+1)^{k-1} E_{m}(f)_{p, w} \\
\leq & c_{k} \delta^{k} \sum_{m=0}^{n}(m+1)^{k-1}\left\|f-V_{n}(f)\right\|_{p, w}
\end{aligned}
$$

References

[1] H. AL-Abdulla,"On equi approximation of bounded μ measurable functions in $L_{P}(\mu)$-space", Thesis presented to college of Education, university of Baghdad, Iraq, (2005).
[2] Z. Ditzian, D. Jiong and D. Leviatan,"Inverse theorem for best polynomial approximation in $\left.\mathrm{L}_{\mathrm{p}}(1<\mathrm{p}<0)\right)^{\prime \prime}$, Proceeding of American Math. society Vol. 120 No. 1 (1994).
[3] Z. Esa, "integral average modulus with application in the approximation of function in the $L_{p, \mu}$ spaces ", Thesis presented to college of education, Al-mustansirya university, Iraq, (2008).
[4] H. Fadhil, "On the constraint spline approximation", Thesis presented to college of Education, university of Babylon, Iraq (2010).
[5] V. H. Hritov, "Best one-sided approximation and mean approximation by interpolation polynomials of periodic functions" ,Math. Balkanica, New series, (1989),418-429.
[6] S. K. Jassim , "one-sided approximation with discrete
operator", ph.D Thesis, Sofia, Bulgaria (1991).
[7] S.K. Jassim and E.S. Bhaya, "Direct and Inverse theorem for best multi-approximation in $\operatorname{Lp}(1 \leqslant p<\infty)$, Journal of Math. and physics Vol. 17, No.3, Iraq, (2002).
[8] G. G. Lornentz ,"Approximation of function", U.S.A. (1966).
[9] V. A. Popov and L. Alekksandrov, "one-sided trigonometrical approximation of periodic multi-variant functions ", Math. Balkanica, (1987), 3-4.

